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Abstract— We formulate and study the thinnest path
problem in wireless ad hoc networks. The objective is
to find a path from the source to the destination that
results in the minimum number of nodes overhearing
the message by carefully choosing the relaying nodes
and their corresponding transmission power. We adopt a
directed hypergraph model of the problem and establish
the NP-completeness of the problem in 2-D networks. We
then develop a polynomial-time approximation algorithm
that offers a

√
n
2 approximation ratio for general directed

hypergraphs (which can model non-isomorphic signal
propagation in space) and constant approximation ratio
for disk hypergraphs (which result from isomorphic
signal propagation). We also consider the thinnest path
problem in 1-D networks and 1-D networks embedded
in 2-D field of eavesdroppers with arbitrary unknown
locations (the so-called 1.5-D networks). We propose a
linear-complexity algorithm based on nested backward
induction that obtains the optimal solution to both 1-D
and 1.5-D networks. In particular, no algorithm, even
with the complete knowledge of the locations of the
eavesdroppers, can obtain a thinner path than the pro-
posed algorithm which does not require the knowledge
of eavesdropper locations.

I. INTRODUCTION

A. The thinnest path problem

We consider the thinnest path problem in wireless ad
hoc networks. For a given source and a destination, the
thinnest path problem asks for a path from the source to
the destination that results in the minimum number of
nodes overhearing the message. Such a path is achieved
by carefully choosing a sequence of relaying nodes and
their corresponding transmission power.

At the first glance, one may wonder whether the
thinnest path problem is simply a shortest path problem
with the weight of each hop (i.e., each edge) given
by the number of nodes who can hear the message
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in this hop. Realizing that a node may be within
the transmission range of multiple relaying nodes and
should not be counted multiple times in the total weight
(referred to as the width) of the resulting path, we see
that the thinnest path problem does not have a simple
cost function that is summable over edges. But rather,
the width of a path is given by the cardinality of the
union of all receiving nodes in each hop, which is a
highly nonlinear function of the weight of each hop.
One may then wonder whether we can redefine the
weight of each hop as the number of nodes that hear
the message for the first time. Such a definition of
edge weight indeed leads to a summable cost function.
Unfortunately, in this case, the edge weight cannot be
predetermined until the thinnest path from the source
to the edge in question has already been established.
The thinnest path problem is thus much more complex
than the shortest path problem. Indeed, we show in this
paper that the thinnest path problem in a 2-D network
is NP-Complete, which is in sharp contrast with the
polynomial nature of the shortest path problem.

Another aspect that complicates the problem is the
design choice of the transmission power at each node
(within a maximum value that may vary across nodes).
In this case, the network cannot be modelled as a simple
graph in which the neighbors of each node are prefixed.
In this paper, we adopt the directed hypergraph model
which easily captures the choice of different neighbor
sets at each node. While a graph is given by a vertex
set V and an edge set E consisting of cardinality-2
subsets of V , a hypergraph [1] is free of the constraint
on the cardinality of an edge. Specifically, any non-
empty subset of V can be an element (referred to
as a hyperedge) of the edge set E. Hypergraphs can
thus capture group behaviors and higher-dimensional
relationships in complex networks that are more than
a simple union of pairwise relationships. In a directed
hypergraph [5], each hyperedge is directed going from
a single source vertex to a non-empty set of destination
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vertices (see Fig. 1-(a) for a directed hypergraph with
3 vertices and 3 directed hyperedges). The directed
hypergraph model of the thinnest path problem with
power control is thus readily seen: rooted at each
node (i.e., the source vertex) are multiple directed
hyperedges, each corresponding to a distinct neighbor
set feasible under the maximum transmission power
of this node. We then arrive at a concrete formulation
of the problem: the thinnest path problem with power
control is to find a minimum-width hyperpath from
the source to the destination where the width of a
hyperpath is given by the cardinality of the union of
the hyperedges on this hyperpath.

Based on the directed hypergraph formulation of the
problem, we first show that the thinnest path problem in
2-D networks is NP-complete by reducing the problem
to the minimum dominating set problem in graphs, a
classic NP-complete problem. We further show that
even with a fixed transmission power at each node
(in this case, the resulting hypergraph degenerates to
a standard graph), the thinnest path problem is NP-
Complete. We then propose a polynomial-time approx-
imation algorithm that offers a

√
n
2 approximation

ratio(n is the number of nodes in the network) for
general directed hypergraphs (which can model non-
isomorphic signal propagation in space) and constant
approximation ratios for disk hypergraphs (which result
from isomorphic signal propagation).

We then consider the thinnest path problem in 1-
D and 1.5-D networks. In a 1-D network, nodes are
located on a line with arbitrary spacing and arbitrary
maximum transmission power. The problem is non-
trivial due to the arbitrary maximum power at each
node which may render the use of backward links
(relaying toward the opposite direction of the desti-
nation) necessary. Finding the thinnest path is thus
equivalent to minimizing the number of nodes to the
left of the source (assuming the destination is to the
right of the source) that can overhear the message,
and our algorithm is based on a nested backward
induction starting at the destination. Referred to as NBI
(nested backward induction), this algorithm has O(n)
time complexity. Since the size of the input date is
O(n), the proposed algorithm is order optimal. For
the 1.5-dimension problem, we have a 1-D network
embedded in a 2-D field of eavesdroppers with arbitrary
unknown locations. Eavesdroppers, of course, will not
be considered for relaying messages. The objective is to
find a path with the minimum overhearing cost incurred
at both the in-network nodes and the eavesdroppers

(which may have a higher overhearing cost). We show
that the NBI algorithm we developed for 1-D networks
directly applies to the 1.5-D problem. More specifically,
no algorithm, even with the complete knowledge of
the locations of the eavesdroppers, can obtain a thinner
path than the NBI algorithm which does not require
the knowledge of eavesdropper locations. This result is
obtained by establishing a strong property of the 1-D
thinnest path algorithm: the area covered by the path
obtained by NBI is a subset of the area covered by
any feasible path from the source to the destination.
This result generalizes to networks with eavesdroppers
located in an arbitrary d-dimensional space.

Motivation for the thinnest path problem arises not
only from the eavesdropper/secrecy perspective, but
perhaps also from the energy efficiency perspective.
Nodes that receive a signal may attempt to decode it,
even if they are not in the optimal relay path. This
may be particularly important in a duty-cycled sensor
network where inadvertent signals may wake up sensors
and cause unnecessary energy consumption.

B. Related work

There is a large body of literature on security issues
in wireless ad hoc networks (see, for example, [2],
[3]). However, to our best knowledge, the thinnest path
problem has not been studied in the literature.

In the general context of algorithmic studies in
hypergraphs, the most related work is on the shortest
path problem in hypergraphs. The shortest path problem
in hypergraphs remains a polynomial-time problem.
The static shortest hyperpath problem was considered
by Knuth [4] and Gallo et al. [5] in which Dijkstra’s
algorithm for graph was extended to obtain the shortest
hyperpaths. Ausiello et al. proposed a dynamic shortest
hyperpath algorithm for directed hypergraphs, consider-
ing only the incremental problem (i.e., network changes
contain only edge insertion and weight decrease) with
the weights of all hyperedges limited to a finite set
of numbers [6]. In [7], Gao et al. developed the first
fully dynamic shortest path algorithms for general
hypergraphs. As discussed in I-A, the thinnest path
problem studied in this paper is fundamentally different
and significantly more complex than the shortest path
problem.

II. PROBLEM FORMULATION

A. A Directed Hypergraph Model of the Network

Consider a network with n nodes located in a d-
dimensional Euclidean space. Each node vi can choose



any transmission power in the interval [pi, Pi] with 0 ≤
pi ≤ Pi < ∞. The network can be modelled by a
directed hypergraph H = (V, E) where V is the vertex
set consisting of the n nodes and E is the set of directed
hyperedges. Each directed hyperedge e ∈ E consists
of a single source vertex se ∈ V and a non-empty set
of destination vertices Te ⊆ V which is a distinct set
of vertices that can hear the transmission of se for a
certain feasible transmission power in [pse

, Pse
].

The above model allows for general non-isomorphic
signal propagation in space. Isomorphic signal prop-
agation leads to a disk hypergraph in which each
vertex vi is associated with a maximum1 transmission
range Ri. There exists a hyperedge e ∈ E from a
source vertex se to destination set Te if and only if
there exists 0 ≤ r ≤ Rse

such that those and only
those vertices in Te are in the d-dimensional sphere
centered at se with radius r. When all vertices have
the same maximum transmission range Ri = 1, we
have a unit disk hypergraph. Fig. 1 gives examples
of directed hypergraph, disk hypergraph, and unit disk
hypergraph. When all vertices have a fixed transmission
power, the directed hypergraph model degenerates to a
directed graph. We can similarly define disk graph (for
isomorphic propagation model) and unit disk graph (for
isomorphic propagation model and identical transmis-
sion power across nodes).

(a) (b) (c)

Fig. 1. (a): Directed hypergraph (b): Disk hypergraph (c): Unit
disk hypergraph

B. The Width of A Hyperpath

Given a source-destination pair (s, t), a hyperpath
from s to t is defined as a sequence of hyperedges
L = {e1, . . . , em} such that sei

∈ Tei−1 for 1 < i ≤ m,
se1 = s and t ∈ Tem

. The width W (L) of a directed
hyperpath L = {e1, . . . , em} is defined as the total

1We can also allow a positive minimum transmission range ri >
0 and refer to the resulting hypergraph as a lower-bounded disk
hypergraph.

number of vertices included in all the hyperedges in
L. More specifically,

W (L) = |{se1 ∪ Te1 ∪ Te2 ∪ . . . ∪ Tem
}|. (1)

The thinnest path problem asks for the hyperpath from
s to t with the minimum width. Note that choosing a
hyperedge e = {se, Te} simultaneously chooses the re-
laying node se and its transmission power (determined
by Te).

III. THE THINNEST PATH PROBLEM IN 2-D
NETWORKS

In this section, we first establish the NP-
completeness of the thinnest path problem in 2-
dimensional networks. This result is obtained by re-
ducing the thinnest path problem to a classic NP-
complete problem—the minimum dominating set prob-
lem in graphs. This result immediately implies the NP-
completeness of the thinnest path problem in higher
dimensions. We then propose a polynomial-time ap-
proximation algorithm that offers a

√
n
2 approximation

ratio for general directed hypergraphs and constant
approximation ratios for disk hypergraphs.

A. NP-completeness

The following two theorems establish the NP-
completeness of the general thinnest path problem in
2-D networks with power control.

Theorem 1: The thinnest path problem in 2-
dimensional unit disk hypergraphs is NP-complete.

Theorem 2: The thinnest path problem in 2-
dimensional disk graphs is NP-complete.

Note that these two theorems state stronger results
than the NP-completeness of a general thinnest path
problem: Theorem 1 states that the problem is NP-
complete even under the isomorphic (disk) propaga-
tion model and identical maximum transmission ranges
(Ri = 1) across nodes; Theorem 2 states that the
problem is NP-complete even when each node has a
fixed transmission range with isomorphic propagation
model (i.e., the graph version of the problem). We
point out that Theorem 1 does not imply Theorem 2
or vice versa. Theorem 1 pertains to networks with
the freedom of power control but constrained in terms
of the identical maximum transmission power across
the network. Theorem 2 pertains to networks without
power control but with diverse transmission powers
across nodes. The NP-completeness of the thinnest path
problem in one type of networks does not imply the
NP-completeness in the other type of networks.



The following theorem shows that the thinnest path
problem in 3-dimensional unit disk graphs (i.e., net-
works with isomorphic propagation and identical and
fixed transmission power at each node) is NP-complete.
Whether the thinnest path problem in 2-D unit disk
graphs is NP-complete is still open.

Theorem 3: The thinnest path problem in 3-
dimensional unit disk graphs is NP-complete.

The proofs of these three theorems are based on
reducing the thinnest path problem to the minimum
dominating set problem in graphs. Recall that the min-
imum dominating set problem in a graph G = {V, E}
asks for the smallest subset U of V such that each
vertex is either in U or a direct neighbor of a vertex
in U . The minimum dominating set problem has been
shown to be NP-complete with the best approximation
ratio given by log n. The basic idea of the proof
is to show that the minimum dominating set in an
arbitrary graph G leads to the thinnest path in a 2-
dimensional unit disk hyergraph (for Theorem 1, and a
2-dimensional disk graph and a 3-dimensional unit disk
graph for Theorems 2 and 3, respectively) specifically
constructed from G. One of the main difficulties in
the proofs is to maintain the geometric properties of
the (unit) disk hypergraphs/graphs induced from an
arbitrary graph G. In an arbitrary graph G, the neighbor
set of each vertex can be defined arbitrarily while
in a (unit) disk hypergraph/graph, the neighbor set
of a vertex is defined based on geometric relations
among vertices which would impose constraints on the
composition of neighbor sets. For instance, in a 2-D
unit disk graph, we can embed at most 5 neighbors
to a vertex without inducing any edge among the
neighboring nodes. The detailed proofs are omitted.

B. Polynomial-Time Approximation Algorithm

We propose a shortest-path based approximation
algorithm for the thinnest path problem in a general
directed hypergraph H = {V, E}. Specifically, for each
directed hyperedge e = {se, Te}, we assign weight
w(e) = |Te|. We then find the shortest path under this
weight definition as an approximate thinnest path. Note
that the shortest path in hypergraphs can be obtained
in polynomial time, and efficient algorithms can be
found in [5], [7]. The theorem below establishes the
approximation ratio of this algorithm. The proof is
omitted.

Theorem 4: The shortest-path based approximation
algorithm provides an approximation ration of

√
n
2

for general directed hypergraphs, of 2(1 + 2α)d for

d−dimensional lower bounded disk hypergraphs with
α = maxvi∈V Ri

minvi∈V ri
, and of 19 for 2-dimensional unit disk

graphs.

IV. THE THINNEST PATH PROBLEM IN 1-D AND

1.5-D NETWORKS

In this section, we consider the thinnest path problem
in 1-D networks. We show that the problem is P
by constructing an algorithm with time complexity of
O(n). Since the input data has size O(n), the proposed
algorithm is order-optimal. We then consider the 1.5-
dimensional problem. We show that the algorithm
developed for 1-D networks directly applies to the
1.5-D problem: no algorithm, even with the complete
knowledge of the locations of the eavesdroppers, can
obtain a thinner path than the proposed algorithm
which does not require the location knowledge of the
eavesdroppers.

A. 1-D Networks

Consider a network with n nodes located on a
straight line. Each vertex vi is associated with a maxi-
mum transmission range Ri and a coordinate xi on the
line (see Fig 2). Without loss of generality, we assume
that x1 ≤ x2 ≤ . . . ≤ xn. Let Av,r denote a closed d-
dimensional disk centered at v with radius r. Then, we
define the cover A(L) of a hyperpath L = {e1, . . . , em}
as

A(L)Δ=
m⋃

i=1

Asei
,rei

(2)

where rei
is the minimum transmission range that

induces hyperedge ei, i.e.,

rei
= min

v∈Tei

{d(sei
, v)} (3)

in which d(·, ·) is the Euclidean distance function in
the space.

s(v4) t(v9)v8v7v6v5v3v2v1

Fig. 2. A 1-D network.



1) The Algorithm based on Nested Backward Induc-
tion (NBI): It is clear that every node located between
the source s and the destination t (see Fig 2) will hear
the message no matter which path is chosen and all
nodes to the right of t can be excluded from the thinnest
path. Therefore, finding the thinnest path is to minimize
the number of vertices to the left of s that can overhear
the message. The problem is nontrivial since a forward
path (i.e., every hop moves the message to the right
toward t) from s to t may not exist and nodes to the
left of s may need to act as relays. The question is
thus how to efficiently find out whether a forward path
exists and if not, which set of nodes to the left of s
need to relay the message.

We propose an algorithm based on nested backward
induction. For each vertex v, we define its predecessor
ρv to be the rightmost vertex on the left side of v that
can reach v:

ρv = arg max
u∈V

{xu : xu < xv, |xu − xv| ≤ Ru}. (4)

Then, in order to reach v, its predecessor ρv or a vertex
to the left of ρv has to transmit. In other words, those
vertices between ρv and v cannot reach v.

The algorithm, referred to as Nested Backward In-
duction (NBI), is then carried out in two steps. In
the first step, the predecessors of certain vertices are
obtained one by one starting from t moving toward s.
Specifically, the predecessor of t, denoted by u1 = ρt,
is first obtained. If xu1 ≤ xs, then the first step is done.
Otherwise, the predecessors of u1, denoted by u2 =
ρu1 , is obtained and its location compared with xs. The
same procedure continues until the currently obtained
predecessor jumps to the left of s or is s itself. The first
step thus produces a sequence of vertices u1, u2, . . . , ul

with u1 = ρt, u2 = ρu1 , u3 = ρu2 , . . ., ul = ρul−1

and xul
≤ xs. Let L1 = {ul, ul−1, . . . , u1, t}, which

is a valid path from ul to t. If ul = s, the algorithm
terminates, and the thinnest path from s to t is given
by L1. Otherwise, we carry out Step 2 of the algorithm
which we find a path from s to ul. Specifically, let
V ′ denote the set of vertices located between ul and
ul−1 including ul but not ul−1. The algorithm finds an
arbitrary path L2 from s to ul that consists of only
vertices in V ′. Then the thinnest path L∗ goes from s
to ul through L2 and then to t through L1.

2) The Correctness and Time Complexity of NBI:
The following theorem establishes the correctness of
the proposed NBI algorithm. It reveals a strong property
of the path obtained by NBI: the cover of the path

obtained by NBI is a subset of the cover of any feasible
path from s to t. The proof is omitted.

Theorem 5: Let L∗ be the path obtained by the NBI
algorithm. Given any valid path L from s to t, we have
AL∗ ⊆ AL.

Theorem 6 below shows the O(n) time complexity
of NBI. Since the input data has size O(n), NBI is
order-optimal.

Theorem 6: The time complexity of the NBI algo-
rithm is O(n).

The O(n) complexity of the first step of NBI can be
easily established. To achieve O(n) complexity in the
second step, however, special care needs to be given
to the specific implementation. If we directly apply a
general breadth-first search (BFS) on a graph G of V ′

where there is a directed edge from v to u if |xu −
xv| ≤ Rv, the complexity would be O(n2). Below, we
propose an optimized BFS with time complexity O(n)
by exploiting the special structure of G, .

The procedure includes two pointers, left and right,
to denote the left and right vertices that has been
traversed in the search. Initially, they are both set to s.
A priority queue Q is also included in the procedure as
a basic part of BFS. Then, when the algorithm searches
the neighbors of one vertex, only those neighbors that
lie outside [xleft, xright] need to be checked. Fig. 3
demonstrates the procedure: at each iteration, the algo-
rithm extracts a vertex z from Q and enqueues those
vertices outside [xleft, xright] that can be reached by z.
This iteration is repeated until ul is reached. In order
to trace back ul to s to obtain L2, a vector parent is
introduced to store the search result as a tree rooted at
s. Then path L2 is given by the path from s to ul in
this tree.

B. 1.5-D Networks

We now consider the 1.5-dimensional problem where
in-network nodes are located on a line and eavesdrop-
pers are located in a d-dimensional space that contains
the line network (see Fig. 4 where eavesdroppers are
located in a 2-D space).

Without loss of generality, we assume that a unit
cost is incurred for each in-network node that hears the
message and a non-negative cost c is incurred for each
eavesdropper that hears the message. The objective is
to find a path L∗ from s to t with the minimum total
cost:

L∗Δ= arg min
L={e1,...,em}

{
∑

v∈A(L)

c(v)} (5)
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Fig. 3. An example of the optimized BFS in Step 2 of NBI (the
red vertices are those between (includes) left and right; an arrow
from v to u indicates that p[u] = v; the procedure ends when ul is
hollow or xul ≥ xleft and the bold arrows represent the path L2

from s to ul.

s(v4) t(v9)v8v7v6v5v3v2v1

Fig. 4. An example of the thinnest path problem in the presence
of eavesdroppers (the blue vertices represent in-network nodes and
the devil heads the eavesdroppers).

where c(v) is the cost for vertex v, and A(L) is the
cover of path L as defined in (2).

Based on the subset property of the cover of the path
obtained by NBI as established in Theorem 5, it is easy
to see that NBI provides the optimal solution to the 1.5-
dimension thinnest path problem without the knowl-
edge of the eavesdroppers locations. More specifically,
no algorithm, even with the complete knowledge of
the locations of the eavesdroppers, can obtain a thinner
path than NBI which does not require the location
knowledge of the eavesdroppers.

V. CONCLUSION

We have presented, to our best knowledge, the first
study of the thinnest path problem. We have shown
that the thinnest path problems in two-dimensional
networks is NP-complete and strongly inapproximable
in general. We have developed a linear-complexity al-
gorithm based on nested backward induction for finding
the thinnest path in one-dimensional networks as well
as one-dimensional networks in the presence of d-
dimensional eavesdroppers.
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